Textile properties of smart textiles and their characterisation

Mònica Ardanuy / Universitat Politècnica de Catalunya
Heura Ventura / Universitat Politècnica de Catalunya
TEXTILE PROPERTIES OF SMART TEXTILES AND THEIR CHARACTERISATION

LU4.2
Contents

• Strength-related textile properties
• Haptic-related properties
• Comfort-related properties
STRENGTH-RELATED TEXTILE PROPERTIES
TENSILE TEST
Tensile test
Tensile test

[Graph showing force vs. elongation]
Tensile test

Maximum force (and force at rupture)
Tensile test

Maximum force (and force at rupture)

Elongation at maximum force (and elongation at rupture)
Tensile test

<table>
<thead>
<tr>
<th>Strip method</th>
<th>Grab method</th>
</tr>
</thead>
</table>

Tensile test

<table>
<thead>
<tr>
<th>Strip method</th>
</tr>
</thead>
</table>
| • *Woven fabrics*
 ISO 13934-1:2013
• *Nonwoven fabrics*
 ISO 9073-3:1989 |

<table>
<thead>
<tr>
<th>Grab method</th>
</tr>
</thead>
</table>

![Diagram showing strip method and grab method for tensile test](image_url)

- **Specimen**: 200 mm
- **Clamp**: 50 mm
- **Clamp**
Tensile test

Strip method
- **Woven fabrics**
 - ISO 13934-1:2013
- **Nonwoven fabrics**
 - ISO 9073-3:1989

Grab method
- **Woven fabrics**
- **Nonwoven fabrics**
 - ISO 9073-18:2008

Specimen
200 mm
50 mm

Clamp

Specimen
100 mm

Clamp
Tensile test

Strip method
- Woven fabrics
 ISO 13934-1:2013
- Nonwoven fabrics
 ISO 9073-3:1989

Grab method
- Woven fabrics
 ISO 13934-2:2014
- Nonwoven fabrics
 ISO 9073-18:2008

Testing conditions
- 5 specimens in both warp and weft (or machine and cross) directions
- Clamping distance and speed will depend on the type of test and fabric
TEARING TEST
Tearing test
Tearing test

![Tearing test equipment](image)

<table>
<thead>
<tr>
<th>Force [N]</th>
<th>Elongation [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tearing test
Tearing test
Tearing test

<table>
<thead>
<tr>
<th>Single tear method</th>
<th>Double tear method</th>
</tr>
</thead>
</table>

LU4.2 | Textile properties of smart textiles and their characterisation
Tearing test

Single tear method
- Trouser-shaped specimens
- ISO 13937-2:2000

Double tear method
Tearing test

<table>
<thead>
<tr>
<th>Single tear method</th>
<th>Double tear method</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Trouser-shaped specimens</td>
<td>• Tongue-shaped specimens</td>
</tr>
</tbody>
</table>
Tearing test

Single tear method
- Trouser-shaped specimens
- ISO 13937-2:2000

Double tear method
- Tongue-shaped specimens
- ISO 13937-4:2000

Testing conditions
- 5 specimens in both warp and weft (or machine and cross) directions
- 100 mm/min
ABRASION TEST
Abrasion test

Martindale method

Load
Specimen
Abrasive element
Abras ion test

Martindale method

Lissajous curve

Load

Specimen

Abrasive element
Abrasion test

Martindale method

Determination of:
• Number of cycles necessary to produce failure (wear-off observed in the fabric)
 or
• Loss of weight suffered by the test piece after a certain number of abrasion cycles

Standards:
• ISO 12947-1,3,4:1998
• ISO 12947-2:2016
PILLING TEST
Pilling test

- The appearance of the specimens tested is compared with a scale of photographic patterns and the level of pilling is classified from 0 to 5.
Pilling test

<table>
<thead>
<tr>
<th>Container methods</th>
<th>Flat methods</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low speed</td>
<td>High speed</td>
</tr>
<tr>
<td>• ICI/M&S Pilling tester</td>
<td></td>
</tr>
<tr>
<td>• ISO 12945-1:2020</td>
<td></td>
</tr>
<tr>
<td>• Random Tumble Pilling Tester</td>
<td></td>
</tr>
<tr>
<td>• ISO 12945-3:2020</td>
<td></td>
</tr>
</tbody>
</table>

- The appearance of the specimens tested is compared with a scale of photographic patterns and the level of pilling is classified from 0 to 5
Pilling test

- The appearance of the specimens tested is compared with a scale of photographic patterns and the level of pilling is classified from 0 to 5.
TAILORABILITY
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility Flexural stiffness Extensibility Relaxation shrinkage (ER) & hygroscopic expansion (EH)
Tailorability (FAST)

• Mechanical properties when the fabrics are subjected to small forces
• To predict the resistance of the fabric to overcome industrial clothing operations

- Compressibility
- Flexural stiffness
- Extensibility

Relaxation shrinkage (ER) & hygroscopic expansion (EH)

Thickness difference at 2 compressive loads
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility
- Thickness difference at 2 compressive loads

Flexural stiffness
- Cantilever length

Extensibility

Relaxation shrinkage (ER) & hygroscopic expansion (EH)
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility
- Thickness difference at 2 compressive loads

Flexural stiffness
- Cantilever length

Extensibility
- Extension under different weights

Relaxation shrinkage (ER) & hygroscopic expansion (EH)
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility
- Thickness difference at 2 compressive loads

Flexural stiffness
- Cantilever length

Extensibility
- Extension under different weights

Relaxation shrinkage (ER) & hygroscopic expansion (EH)
- Fabric length vs. time
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility
- Thickness difference at 2 compressive loads

Flexural stiffness
- Cantilever length

Extensibility
- Extension under different weights

Relaxation shrinkage (ER) & hygroscopic expansion (EH)
- Fabric length
- Drying
- Time

LU4.2 | Textile properties of smart textiles and their characterisation
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility
- Thickness difference at 2 compressive loads

Flexural stiffness
- Cantilever length

Extensibility
- Extension under different weights

Relaxation shrinkage (ER) & hygroscopic expansion (EH)

- Fabric length
- L1
- L2

- Drying
- Wetting

Time
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility
- Thickness difference at 2 compressive loads

Flexural stiffness
- Cantilever length

Extensibility
- Extension under different weights

Relaxation shrinkage (ER) & hygroscopic expansion (EH)

![Diagram showing fabric length changes over time with stages labeled Drying, Wetting, and Drying](image)
Tailorability (FAST)

- Mechanical properties when the fabrics are subjected to small forces
- To predict the resistance of the fabric to overcome industrial clothing operations

Compressibility

- Thickness difference at 2 compressive loads

Flexural stiffness

- Cantilever length

Extensibility

- Extension under different weights

Relaxation shrinkage (ER) & hygroscopic expansion (EH)

\[
ER = 100 \frac{L_1 - L_3}{L_1} \\
EH = 100 \frac{L_2 - L_3}{L_3}
\]
DRAPABILITY
Drapability

Kawavata test (KES-F)
Drapability

Kawavata test (KES-F)
FASTNESS
Fastness

Washing fastness

Original sample

Washing
1, 5, 10, 20 or 50 washing cycles

Exposed sample

Testing functional properties

LU4.2 | Textile properties of smart textiles and their characterisation
Washing fastness

Original sample

Washing
1, 5, 10, 20 or 50 washing cycles

Exposed sample

Testing functional properties

Colour fastness

Original sample

Exposition to different actions/environments
rubbing, wear, ironing, high temperatures, wetting, etc.

Exposed sample

Colour measurement
COMFORT-RELATED PROPERTIES
STIFFNESS & RECOVERY ANGLE
Stiffness & Recovery angle

Stiffness: Shirley method

- UNE 40392:1979
- ASTM D1388-96R02
Stiffness & Recovery angle

Stiffness: Shirley method

- UNE 40392:1979
- ASTM D1388-96R02

![Stiffness measurement device]

Wrinkle recovery angle

- ISO 2313-1:2021
- ISO 2313-2:2021

![Wrinkle recovery angle measurement device]
WATER VAPOUR RESISTANCE & THERMAL RESISTANCE
Water vapour resistance & Thermal resistance

Water vapour resistance

- ISO 15496:2018

Saturated solution of potassium acetate

Fabric

Membrane

Measurement of weight increase

H₂O Water vapour
Water vapour resistance & Thermal resistance

Water vapour resistance
- ISO 15496:2018

![Diagram of water vapour resistance](image)

Thermal resistance

![Diagram of thermal resistance](image)

Measurement of weight increase

Saturated solution of potassium acetate
- Fabric
- Membrane

Measurement of heating power
- Controlled atmosphere at 20 °C, 65% RH
- Airflow at 1 m/s
- Hot plate at 35 °C
AIR PERMEABILITY & WATER WICKING
Air permeability & Water wicking

Air permeability

- *Woven Fabrics*
 ISO 9237:1995
- *Nonwovens*
 ISO 9073-15:2007
Air permeability & Water wicking

Air permeability

- *Woven Fabrics*
 ISO 9237:1995
- *Nonwovens*
 ISO 9073-15:2007

Water wicking

- *Vertical wicking test AATCC 197*
- *Horizontal wicking test AATCC 198*
Summary

In this lecture you have revised how to determine the textile properties of smart textiles and the common standards used for testing:

- the **strength-related textile properties** (tensile, tearing, abrasion and pilling tests)
- the **haptic-related properties** (tailorability, drapability and fastness)
- the **comfort-related properties** (stiffness, recovering angle, water vapour resistance, air permeability, thermal resistance and water wicking).
Partners:

Project:
Innovative smart textiles & entrepreneurship
2021-1-RO01-KA220-HED-000027527

Financial support:
The European Commission’s support for the production of this publication does not constitute an endorsement of the contents, which reflect the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein.
Innovative smart textiles & entrepreneurship
Project 2021-1-RO01-KA220-HED-000027527

Co-funded by the European Union